
Crochet Documentation
Release 1.7.0+0.g93c94be

Itamar Turner-Trauring

Aug 09, 2017

Contents

1 Table of Contents 3
1.1 Introduction . 3

1.1.1 Crochet: Use Twisted Anywhere! . 3
1.1.2 API and Features . 3
1.1.3 Examples . 4

1.2 The API . 9
1.2.1 Setup . 9
1.2.2 @wait_for: Blocking Calls into Twisted . 9
1.2.3 @run_in_reactor: Asynchronous Results . 11
1.2.4 Using Crochet from Twisted Applications . 12
1.2.5 Unit Testing . 13

1.3 Best Practices . 13
1.3.1 Hide Twisted and Crochet . 13
1.3.2 Minimize Decorated Code . 15

1.4 Known Issues and Workarounds . 16
1.4.1 Preventing Deadlocks on Shutdown . 16
1.4.2 Reducing Twisted Log Messages . 16
1.4.3 Missing Tracebacks . 16
1.4.4 uWSGI, multiprocessing, Celery . 16

1.5 What’s New . 17
1.5.1 1.7.0 . 17
1.5.2 1.6.0 . 17
1.5.3 1.5.0 . 17
1.5.4 1.4.0 . 17
1.5.5 1.3.0 . 18
1.5.6 1.2.0 . 18
1.5.7 1.1.0 . 18
1.5.8 1.0.0 . 19
1.5.9 0.9.0 . 19
1.5.10 0.8.1 . 19
1.5.11 0.7.0 . 19
1.5.12 0.6.0 . 19
1.5.13 0.5.0 . 20

i

ii

Crochet Documentation, Release 1.7.0+0.g93c94be

Crochet is an MIT-licensed library that makes it easier for blocking and threaded applications like Flask or Django to
use the Twisted networking framework.

Here’s an example of a program using Crochet. Notice that you get a completely blocking interface to Twisted and do
not need to run the Twisted reactor, the event loop, yourself.

#!/usr/bin/python
"""
Do a DNS lookup using Twisted's APIs.
"""
from __future__ import print_function

The Twisted code we'll be using:
from twisted.names import client

from crochet import setup, wait_for
setup()

Crochet layer, wrapping Twisted's DNS library in a blocking call.
@wait_for(timeout=5.0)
def gethostbyname(name):

"""Lookup the IP of a given hostname.

Unlike socket.gethostbyname() which can take an arbitrary amount of time
to finish, this function will raise crochet.TimeoutError if more than 5
seconds elapse without an answer being received.
"""
d = client.lookupAddress(name)
d.addCallback(lambda result: result[0][0].payload.dottedQuad())
return d

if __name__ == '__main__':
Application code using the public API - notice it works in a normal
blocking manner, with no event loop visible:
import sys
name = sys.argv[1]
ip = gethostbyname(name)
print(name, "->", ip)

Run on the command line:

$ python blockingdns.py twistedmatrix.com
twistedmatrix.com -> 66.35.39.66

Contents 1

Crochet Documentation, Release 1.7.0+0.g93c94be

2 Contents

CHAPTER 1

Table of Contents

Introduction

Crochet: Use Twisted Anywhere!

Crochet is an MIT-licensed library that makes it easier to use Twisted from regular blocking code. Some use cases
include:

• Easily use Twisted from a blocking framework like Django or Flask.

• Write a library that provides a blocking API, but uses Twisted for its implementation.

• Port blocking code to Twisted more easily, by keeping a backwards compatibility layer.

• Allow normal Twisted programs that use threads to interact with Twisted more cleanly from their threaded parts.
For example, this can be useful when using Twisted as a WSGI container.

Crochet is maintained by Itamar Turner-Trauring.

You can install Crochet by running:

$ pip install crochet

Downloads are available on PyPI.

Documentation can be found on Read The Docs.

Bugs and feature requests should be filed at the project Github page.

API and Features

Crochet supports Python 2.7, 3.4, 3.5 and 3.6 as well as PyPy.

Crochet provides the following basic APIs:

3

https://twistedmatrix.com/documents/current/web/howto/web-in-60/wsgi.html
https://pypi.python.org/pypi/crochet
https://crochet.readthedocs.org/
https://github.com/itamarst/crochet/

Crochet Documentation, Release 1.7.0+0.g93c94be

• Allow blocking code to call into Twisted and block until results are available or a timeout is hit, using the
crochet.wait_for decorator.

• A lower-level API (crochet.run_in_reactor) allows blocking code to run code “in the background” in
the Twisted thread, with the ability to repeatedly check if it’s done.

Crochet will do the following on your behalf in order to enable these APIs:

• Transparently start Twisted’s reactor in a thread it manages.

• Shut down the reactor automatically when the process’ main thread finishes.

• Hook up Twisted’s log system to the Python standard library logging framework. Unlike Twisted’s built-in
logging bridge, this includes support for blocking Handler instances.

Examples

Background Scheduling

You can use Crochet to schedule events that will run in the background without slowing down the page rendering of
your web applications:

#!/usr/bin/python
"""
An example of scheduling time-based events in the background.

Download the latest EUR/USD exchange rate from Yahoo every 30 seconds in the
background; the rendered Flask web page can use the latest value without
having to do the request itself.

Note this is example is for demonstration purposes only, and is not actually
used in the real world. You should not do this in a real application without
reading Yahoo's terms-of-service and following them.
"""

from __future__ import print_function

from flask import Flask

from twisted.internet.task import LoopingCall
from twisted.web.client import getPage
from twisted.python import log

from crochet import wait_for, run_in_reactor, setup
setup()

Twisted code:
class _ExchangeRate(object):

"""Download an exchange rate from Yahoo Finance using Twisted."""

def __init__(self, name):
self._value = None
self._name = name

External API:
def latest_value(self):

"""Return the latest exchange rate value.

4 Chapter 1. Table of Contents

Crochet Documentation, Release 1.7.0+0.g93c94be

May be None if no value is available.
"""
return self._value

def start(self):
"""Start the background process."""
self._lc = LoopingCall(self._download)
Run immediately, and then every 30 seconds:
self._lc.start(30, now=True)

def _download(self):
"""Download the page."""
print("Downloading!")
def parse(result):

print("Got %r back from Yahoo." % (result,))
values = result.strip().split(",")
self._value = float(values[1])

d = getPage(
"http://download.finance.yahoo.com/d/quotes.csv?e=.csv&f=c4l1&s=%s=X"
% (self._name,))

d.addCallback(parse)
d.addErrback(log.err)
return d

Blocking wrapper:
class ExchangeRate(object):

"""Blocking API for downloading exchange rate."""

def __init__(self, name):
self._exchange = _ExchangeRate(name)

@run_in_reactor
def start(self):

self._exchange.start()

@wait_for(timeout=1)
def latest_value(self):

"""Return the latest exchange rate value.

May be None if no value is available.
"""
return self._exchange.latest_value()

EURUSD = ExchangeRate("EURUSD")
app = Flask(__name__)

@app.route('/')
def index():

rate = EURUSD.latest_value()
if rate is None:

rate = "unavailable, please refresh the page"
return "Current EUR/USD exchange rate is %s." % (rate,)

if __name__ == '__main__':

1.1. Introduction 5

Crochet Documentation, Release 1.7.0+0.g93c94be

import sys, logging
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
EURUSD.start()
app.run()

SSH into your Server

You can SSH into your Python process and get a Python prompt, allowing you to poke around in the internals of your
running program:

#!/usr/bin/python
"""
A demonstration of Conch, allowing you to SSH into a running Python server and
inspect objects at a Python prompt.

If you're using the system install of Twisted, you may need to install Conch
separately, e.g. on Ubuntu:

$ sudo apt-get install python-twisted-conch

Once you've started the program, you can ssh in by doing:

$ ssh admin@localhost -p 5022

The password is 'secret'. Once you've reached the Python prompt, you have
access to the app object, and can import code, etc.:

>>> 3 + 4
7
>>> print(app)
<flask.app.Flask object at 0x18e1690>

"""

import logging

from flask import Flask
from crochet import setup, run_in_reactor
setup()

Web server:
app = Flask(__name__)

@app.route('/')
def index():

return "Welcome to my boring web server!"

@run_in_reactor
def start_ssh_server(port, username, password, namespace):

"""
Start an SSH server on the given port, exposing a Python prompt with the
given namespace.
"""
This is a lot of boilerplate, see http://tm.tl/6429 for a ticket to
provide a utility function that simplifies this.

6 Chapter 1. Table of Contents

Crochet Documentation, Release 1.7.0+0.g93c94be

from twisted.internet import reactor
from twisted.conch.insults import insults
from twisted.conch import manhole, manhole_ssh
from twisted.cred.checkers import (

InMemoryUsernamePasswordDatabaseDontUse as MemoryDB)
from twisted.cred.portal import Portal

sshRealm = manhole_ssh.TerminalRealm()
def chainedProtocolFactory():

return insults.ServerProtocol(manhole.Manhole, namespace)
sshRealm.chainedProtocolFactory = chainedProtocolFactory

sshPortal = Portal(sshRealm, [MemoryDB(**{username: password})])
reactor.listenTCP(port, manhole_ssh.ConchFactory(sshPortal),

interface="127.0.0.1")

if __name__ == '__main__':
import sys
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
start_ssh_server(5022, "admin", "secret", {"app": app})
app.run()

DNS Query

Twisted also has a fully featured DNS library:

#!/usr/bin/python
"""
A command-line application that uses Twisted to do an MX DNS query.
"""

from __future__ import print_function

from twisted.names.client import lookupMailExchange
from crochet import setup, wait_for
setup()

Twisted code:
def _mx(domain):

"""
Return Deferred that fires with a list of (priority, MX domain) tuples for
a given domain.
"""
def got_records(result):

return sorted(
[(int(record.payload.preference), str(record.payload.name))
for record in result[0]])

d = lookupMailExchange(domain)
d.addCallback(got_records)
return d

Blocking wrapper:
@wait_for(timeout=5)
def mx(domain):

1.1. Introduction 7

Crochet Documentation, Release 1.7.0+0.g93c94be

"""
Return list of (priority, MX domain) tuples for a given domain.
"""
return _mx(domain)

Application code:
def main(domain):

print("Mail servers for %s:" % (domain,))
for priority, mailserver in mx(domain):

print(priority, mailserver)

if __name__ == '__main__':
import sys
main(sys.argv[1])

Using Crochet in Normal Twisted Code

You can use Crochet’s APIs for calling into the reactor thread from normal Twisted applications:

#!/usr/bin/python
"""
An example of using Crochet from a normal Twisted application.
"""

import sys

from crochet import no_setup, wait_for
Tell Crochet not to run the reactor:
no_setup()

from twisted.internet import reactor
from twisted.python import log
from twisted.web.wsgi import WSGIResource
from twisted.web.server import Site
from twisted.names import client

A WSGI application, will be run in thread pool:
def application(environ, start_response):

start_response('200 OK', [])
try:

ip = gethostbyname('twistedmatrix.com')
return "%s has IP %s" % ('twistedmatrix.com', ip)

except Exception, e:
return 'Error doing lookup: %s' % (e,)

A blocking API that will be called from the WSGI application, but actually
uses DNS:
@wait_for(timeout=10)
def gethostbyname(name):

d = client.lookupAddress(name)
d.addCallback(lambda result: result[0][0].payload.dottedQuad())
return d

Normal Twisted code, serving the WSGI application and running the reactor:
def main():

8 Chapter 1. Table of Contents

Crochet Documentation, Release 1.7.0+0.g93c94be

log.startLogging(sys.stdout)
pool = reactor.getThreadPool()
reactor.listenTCP(5000, Site(WSGIResource(reactor, pool, application)))
reactor.run()

if __name__ == '__main__':
main()

The API

Using Crochet involves three parts: reactor setup, defining functions that call into Twisted’s reactor, and using those
functions.

Setup

Crochet does a number of things for you as part of setup. Most significantly, it runs Twisted’s reactor in a thread it
manages. Doing setup is easy, just call the setup() function:

from crochet import setup
setup()

Since Crochet is intended to be used as a library, multiple calls work just fine; if more than one library does crochet.
setup() only the first one will do anything.

@wait_for: Blocking Calls into Twisted

Now that you’ve got the reactor running, the next stage is defining some functions that will run inside the Twisted
reactor thread. Twisted’s APIs are not thread-safe, and so they cannot be called directly from another thread. Moreover,
results may not be available immediately. The easiest way to deal with these issues is to decorate a function that calls
Twisted APIs with crochet.wait_for.

• When the decorated function is called, the code will not run in the calling thread, but rather in the reactor thread.

• The function blocks until a result is available from the code running in the Twisted thread. The returned result
is the result of running the code; if the code throws an exception, an exception is thrown.

• If the underlying code returns a Deferred, it is handled transparently; its results are extracted and passed to
the caller.

• crochet.wait_for takes a timeout argument, a float indicating the number of seconds to wait un-
til a result is available. If the given number of seconds pass and the underlying operation is still unfinished
a crochet.TimeoutError exception is raised, and the wrapped Deferred is canceled. If the underly-
ing API supports cancellation this might free up any unused resources, close outgoing connections etc., but
cancellation is not guaranteed and should not be relied on.

Note: wait_for was added to Crochet in v1.2.0. Prior releases provided a similar API called
wait_for_reactor which did not provide timeouts. This older API still exists but is deprecated since waiting
indefinitely is a bad idea.

To see what this means, let’s return to the first example in the documentation:

1.2. The API 9

Crochet Documentation, Release 1.7.0+0.g93c94be

#!/usr/bin/python
"""
Do a DNS lookup using Twisted's APIs.
"""
from __future__ import print_function

The Twisted code we'll be using:
from twisted.names import client

from crochet import setup, wait_for
setup()

Crochet layer, wrapping Twisted's DNS library in a blocking call.
@wait_for(timeout=5.0)
def gethostbyname(name):

"""Lookup the IP of a given hostname.

Unlike socket.gethostbyname() which can take an arbitrary amount of time
to finish, this function will raise crochet.TimeoutError if more than 5
seconds elapse without an answer being received.
"""
d = client.lookupAddress(name)
d.addCallback(lambda result: result[0][0].payload.dottedQuad())
return d

if __name__ == '__main__':
Application code using the public API - notice it works in a normal
blocking manner, with no event loop visible:
import sys
name = sys.argv[1]
ip = gethostbyname(name)
print(name, "->", ip)

Twisted’s lookupAddress() call returns a Deferred, but the code calling the decorated gethostbyname()
doesn’t know that. As far as the caller concerned is just calling a blocking function that returns a result or raises an
exception. Run on the command line with a valid domain we get:

$ python blockingdns.py twistedmatrix.com
twistedmatrix.com -> 66.35.39.66

If we try to call the function with an invalid domain, we get back an exception:

$ python blockingdns.py doesnotexist
Trace back (most recent call last):

File "examples/blockingdns.py", line 33, in <module>
ip = gethostbyname(name)

File "/home/itamar/crochet/crochet/_eventloop.py", line 434, in wrapper
return eventual_result.wait(timeout)

File "/home/itamar/crochet/crochet/_eventloop.py", line 216, in wait
result.raiseException()

File "<string>", line 2, in raiseException
twisted.names.error.DNSNameError: <Message id=36791 rCode=3 maxSize=0 flags=answer,
→˓recDes,recAv queries=[Query('doesnotexist', 1, 1)] authority=[<RR name= type=SOA
→˓class=IN ttl=1694s auth=False>]>

10 Chapter 1. Table of Contents

Crochet Documentation, Release 1.7.0+0.g93c94be

@run_in_reactor: Asynchronous Results

wait_for is implemented using run_in_reactor, a more sophisticated and lower-level API. Rather than waiting
until a result is available, it returns a special object supporting multiple attempts to retrieve results, as well as manual
cancellation. This can be useful for running tasks “in the background”, i.e. asynchronously, as opposed to blocking
and waiting for them to finish.

Decorating a function that calls Twisted APIs with run_in_reactor has two consequences:

• When the function is called, the code will not run in the calling thread, but rather in the reactor thread.

• The return result from a decorated function is an EventualResult instance, wrapping the result of the
underlying code, with particular support for Deferred instances.

EventualResult has the following basic methods:

• wait(timeout): Return the result when it becomes available; if the result is an exception it will be
raised. The timeout argument is a float indicating a number of seconds; wait() will throw crochet.
TimeoutError if the timeout is hit.

• cancel(): Cancel the operation tied to the underlying Deferred. Many, but not all, Deferred results
returned from Twisted allow the underlying operation to be canceled. Even if implemented, cancellation may
not be possible for a variety of reasons, e.g. it may be too late. Its main purpose to free up no longer used
resources, and it should not be relied on otherwise.

There are also some more specialized methods:

• original_failure() returns the underlying Twisted Failure object if your result was a raised exception,
allowing you to print the original traceback that caused the exception. This is necessary because the default
exception you will see raised from EventualResult.wait() won’t include the stack from the underlying
Twisted code where the exception originated.

• stash(): Sometimes you want to store the EventualResult in memory for later retrieval. This is specifi-
cally useful when you want to store a reference to the EventualResult in a web session like Flask’s (see the
example below). stash() stores the EventualResult in memory, and returns an integer uid that can be
used to retrieve the result using crochet.retrieve_result(uid). Note that retrieval works only once
per uid. You will need the stash the EventualResult again (with a new resulting uid) if you want to retrieve
it again later.

In the following example, you can see all of these APIs in use. For each user session, a download is started in the
background. Subsequent page refreshes will eventually show the downloaded page.

#!/usr/bin/python
"""
A flask web application that downloads a page in the background.
"""

import logging
from flask import Flask, session, escape
from crochet import setup, run_in_reactor, retrieve_result, TimeoutError

Can be called multiple times with no ill-effect:
setup()

app = Flask(__name__)

@run_in_reactor
def download_page(url):

"""

1.2. The API 11

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

Crochet Documentation, Release 1.7.0+0.g93c94be

Download a page.
"""
from twisted.web.client import getPage
return getPage(url)

@app.route('/')
def index():

if 'download' not in session:
Calling an @run_in_reactor function returns an EventualResult:
result = download_page('http://www.google.com')
session['download'] = result.stash()
return "Starting download, refresh to track progress."

Retrieval is a one-time operation, so the uid in the session cannot be
reused:
result = retrieve_result(session.pop('download'))
try:

download = result.wait(timeout=0.1)
return "Downloaded: " + escape(download)

except TimeoutError:
session['download'] = result.stash()
return "Download in progress..."

except:
The original traceback of the exception:
return "Download failed:\n" + result.original_failure().getTraceback()

if __name__ == '__main__':
import os, sys
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
app.secret_key = os.urandom(24)
app.run()

Using Crochet from Twisted Applications

If your application is already planning on running the Twisted reactor itself (e.g. you’re using Twisted as a WSGI
container), Crochet’s default behavior of running the reactor in a thread is a problem. To solve this, Crochet provides
the no_setup() function, which causes future calls to setup() to do nothing. Thus, an application that will run
the Twisted reactor but also wants to use a Crochet-using library must run it first:

from crochet import no_setup
no_setup()
Only now do we import libraries that might run crochet.setup():
import blockinglib

... setup application ...

from twisted.internet import reactor
reactor.run()

12 Chapter 1. Table of Contents

Crochet Documentation, Release 1.7.0+0.g93c94be

Unit Testing

Both @wait_for and @run_in_reactor expose the underlying Twisted function via a wrapped_function
attribute. This allows unit testing of the Twisted code without having to go through the Crochet layer.

#!/usr/bin/python
"""
Demonstration of accessing wrapped functions for testing.
"""

from __future__ import print_function

from crochet import setup, run_in_reactor
setup()

@run_in_reactor
def add(x, y):

return x + y

if __name__ == '__main__':
print("add() returns EventualResult:")
print(" ", add(1, 2))
print("add.wrapped_function() returns result of underlying function:")
print(" ", add.wrapped_function(1, 2))

When run, this gives the following output:

add() returns EventualResult:
<crochet._eventloop.EventualResult object at 0x2e8b390>

add.wrapped_function() returns result of underlying function:
3

Best Practices

Hide Twisted and Crochet

Consider some synchronous do-one-thing-after-the-other application code that wants to use event-driven Twisted-
using code. We have two threads at a minimum: the application thread(s) and the reactor thread. There are also
multiple layers of code involved in this interaction:

• Twisted code: Should only be called in reactor thread. This may be code from the Twisted package itself, or
more likely code you have written that is built on top of Twisted.

• @wait_for/@run_in_reactor wrappers: The body of the functions runs in the reactor thread... but the caller
should be in the application thread.

• The application code: Runs in the application thread(s), expects synchronous/blocking calls.

Sometimes the first two layers suffice, but there are some issues with only having these. First, if you’re using
@run_in_reactor it requires the application code to understand Crochet’s API, i.e. EventualResult ob-
jects. Second, if the wrapped function returns an object that expects to interact with Twisted, the application code will
not be able to use that object since it will be called in the wrong thread.

A better solution is to have an additional layer in-between the application code and @wait_for/
@run_in_reactor wrappers. This layer can hide the details of the Crochet API and wrap returned Twisted

1.3. Best Practices 13

Crochet Documentation, Release 1.7.0+0.g93c94be

objects if necessary. As a result the application code simply seems a normal API, with no need to understand
EventualResult objects or Twisted.

In the following example the different layers of the code demonstrate this separation: _ExchangeRate is just
Twisted code, and ExchangeRate provides a blocking wrapper using Crochet.

#!/usr/bin/python
"""
An example of scheduling time-based events in the background.

Download the latest EUR/USD exchange rate from Yahoo every 30 seconds in the
background; the rendered Flask web page can use the latest value without
having to do the request itself.

Note this is example is for demonstration purposes only, and is not actually
used in the real world. You should not do this in a real application without
reading Yahoo's terms-of-service and following them.
"""

from __future__ import print_function

from flask import Flask

from twisted.internet.task import LoopingCall
from twisted.web.client import getPage
from twisted.python import log

from crochet import wait_for, run_in_reactor, setup
setup()

Twisted code:
class _ExchangeRate(object):

"""Download an exchange rate from Yahoo Finance using Twisted."""

def __init__(self, name):
self._value = None
self._name = name

External API:
def latest_value(self):

"""Return the latest exchange rate value.

May be None if no value is available.
"""
return self._value

def start(self):
"""Start the background process."""
self._lc = LoopingCall(self._download)
Run immediately, and then every 30 seconds:
self._lc.start(30, now=True)

def _download(self):
"""Download the page."""
print("Downloading!")
def parse(result):

print("Got %r back from Yahoo." % (result,))
values = result.strip().split(",")

14 Chapter 1. Table of Contents

Crochet Documentation, Release 1.7.0+0.g93c94be

self._value = float(values[1])
d = getPage(

"http://download.finance.yahoo.com/d/quotes.csv?e=.csv&f=c4l1&s=%s=X"
% (self._name,))

d.addCallback(parse)
d.addErrback(log.err)
return d

Blocking wrapper:
class ExchangeRate(object):

"""Blocking API for downloading exchange rate."""

def __init__(self, name):
self._exchange = _ExchangeRate(name)

@run_in_reactor
def start(self):

self._exchange.start()

@wait_for(timeout=1)
def latest_value(self):

"""Return the latest exchange rate value.

May be None if no value is available.
"""
return self._exchange.latest_value()

EURUSD = ExchangeRate("EURUSD")
app = Flask(__name__)

@app.route('/')
def index():

rate = EURUSD.latest_value()
if rate is None:

rate = "unavailable, please refresh the page"
return "Current EUR/USD exchange rate is %s." % (rate,)

if __name__ == '__main__':
import sys, logging
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
EURUSD.start()
app.run()

Minimize Decorated Code

It’s best to have as little code as possible in the @wait_for/@run_in_reactor wrappers. As this code straddles
two worlds (or at least, two threads) it is more difficult to unit test. Having an extra layer between this code and the
application code is also useful in this regard as well: Twisted code can be pushed into the lower-level Twisted layer,
and code hiding the Twisted details from the application code can be pushed into the higher-level layer.

1.3. Best Practices 15

Crochet Documentation, Release 1.7.0+0.g93c94be

Known Issues and Workarounds

Preventing Deadlocks on Shutdown

To ensure a timely process exit, during reactor shutdown Crochet will try to interrupt calls to EventualResult.
wait() or functions decorated with @wait_for with a crochet.ReactorStopped exception. This is still
not a complete solution, unfortunately. If you are shutting down a thread pool as part of Twisted’s reactor shutdown,
this will wait until all threads are done. If you’re blocking indefinitely, this may rely on Crochet interrupting those
blocking calls... but Crochet’s shutdown may be delayed until the thread pool finishes shutting down, depending on
the ordering of shutdown events.

The solution is to interrupt all blocking calls yourself. You can do this by firing or canceling any Deferred instances
you are waiting on as part of your application shutdown, and do so before you stop any thread pools.

Reducing Twisted Log Messages

Twisted can be rather verbose with its log messages. If you wish to reduce the message flow you can limit them to
error messages only:

import logging
logging.getLogger('twisted').setLevel(logging.ERROR)

Missing Tracebacks

In order to prevent massive memory leaks, Twisted currently wipes out the traceback from exceptions it captures
(see https://tm.tl/7873 for ideas on improving this). This means that often exceptions re-raised by Crochet will be
missing their tracebacks. You can however get access to a string version of the traceback, suitable for logging, from
EventualResult objects returned by @run_in_reactor-wrapped functions:

from crochet import run_in_reactor, TimeoutError

@run_in_reactor
def download_page(url):

from twisted.web.client import getPage
return getPage(url)

result = download_page("https://github.com")
try:

page = result.wait(timeout=1000)
except TimeoutError:

Handle timeout ...
except:

Something else happened:
print(result.original_failure().getTraceback())

uWSGI, multiprocessing, Celery

uWSGI, the standard library multiprocessing.py library and Celery by default use fork()without exec() to
create child processes on Unix systems. This means they effectively clone a running parent Python process, preserving
all existing imported modules. This is a fundamentally broken thing to do, e.g. it breaks the standard library’s
logging package. It also breaks Crochet.

16 Chapter 1. Table of Contents

https://tm.tl/7873

Crochet Documentation, Release 1.7.0+0.g93c94be

You have two options for dealing with this problem. The ideal solution is to avoid this “feature”:

uWSGI Use the --lazy-apps command-line option.

multiprocessing.py Use the spawn (or possibly forkserver) start methods when using Python 3. See
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods for more details.

Alternatively, you can ensure you only start Crochet inside the child process:

uWSGI Only run crochet.setup() inside the WSGI application function.

multiprocessing.py Only run crochet.setup() in the child process.

Celery Only run crochet.setup() inside tasks.

What’s New

1.7.0

Bug fixes:

• If the Python logging.Handler throws an exception Crochet no longer goes into a death spiral. Thanks to Michael
Schlenker for the bug report.

Removed features:

• Versions of Twisted < 16.0 are no longer supported (i.e. no longer tested in CI.)

1.6.0

New features:

• Added support for Python 3.6.

1.5.0

New features:

• Added support for Python 3.5.

Removed features:

• Python 2.6, Python 3.3, and versions of Twisted < 15.0 are no longer supported.

1.4.0

New features:

• Added support for Python 3.4.

Documentation:

• Added a section on known issues and workarounds.

Bug fixes:

• Main thread detection (used to determine when Crochet should shutdown) is now less fragile. This means
Crochet now supports more environments, e.g. uWSGI. Thanks to Ben Picolo for the patch.

1.5. What’s New 17

https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods

Crochet Documentation, Release 1.7.0+0.g93c94be

1.3.0

Bug fixes:

• It is now possible to call EventualResult.wait() (or functions wrapped in wait_for) at import time
if another thread holds the import lock. Thanks to Ken Struys for the patch.

1.2.0

New features:

• crochet.wait_for implements the timeout/cancellation pattern documented in previous versions of Cro-
chet. crochet.wait_for_reactor and EventualResult.wait(timeout=None) are now depre-
cated, since lacking timeouts they could potentially block forever.

• Functions wrapped with wait_for and run_in_reactor can now be accessed via the
wrapped_function attribute, to ease unit testing of the underlying Twisted code.

API changes:

• It is no longer possible to call EventualResult.wait() (or functions wrapped with wait_for) at import
time, since this can lead to deadlocks or prevent other threads from importing. Thanks to Tom Prince for the
bug report.

Bug fixes:

• warnings are no longer erroneously turned into Twisted log messages.

• The reactor is now only imported when crochet.setup() or crochet.no_setup() are called, al-
lowing daemonization if only crochet is imported (http://tm.tl/7105). Thanks to Daniel Nephin for the bug
report.

Documentation:

• Improved motivation, added contact info and news to the documentation.

• Better example of using Crochet from a normal Twisted application.

1.1.0

Bug fixes:

• EventualResult.wait() can now be used safely from multiple threads, thanks to Gavin Panella for re-
porting the bug.

• Fixed reentrancy deadlock in the logging code caused by http://bugs.python.org/issue14976, thanks to Rod
Morehead for reporting the bug.

• Crochet now installs on Python 3.3 again, thanks to Ben Cordero.

• Crochet should now work on Windows, thanks to Konstantinos Koukopoulos.

• Crochet tests can now run without adding its absolute path to PYTHONPATH or installing it first.

Documentation:

• EventualResult.original_failure is now documented.

18 Chapter 1. Table of Contents

http://tm.tl/7105
http://bugs.python.org/issue14976

Crochet Documentation, Release 1.7.0+0.g93c94be

1.0.0

Documentation:

• Added section on use cases and alternatives. Thanks to Tobias Oberstein for the suggestion.

Bug fixes:

• Twisted does not have to be pre-installed to run setup.py, thanks to Paul Weaver for bug report and Chris
Scutcher for patch.

• Importing Crochet does not have side-effects (installing reactor event) any more.

• Blocking calls are interrupted earlier in the shutdown process, to reduce scope for deadlocks. Thanks to rmore-
head for bug report.

0.9.0

New features:

• Expanded and much improved documentation, including a new section with design suggestions.

• New decorator @wait_for_reactor added, a simpler alternative to @run_in_reactor.

• Refactored @run_in_reactor, making it a bit more responsive.

• Blocking operations which would otherwise never finish due to reactor having stopped (EventualResult.
wait() or @wait_for_reactor decorated call) will be interrupted with a ReactorStopped exception.
Thanks to rmorehead for the bug report.

Bug fixes:

• @run_in_reactor decorated functions (or rather, their generated wrapper) are interrupted by Ctrl-C.

• On POSIX platforms, a workaround is installed to ensure processes started by reactor.spawnProcess have their
exit noticed. See Twisted ticket 6378 for more details about the underlying issue.

0.8.1

• EventualResult.wait() now raises error if called in the reactor thread, thanks to David Buchmann.

• Unittests are now included in the release tarball.

• Allow Ctrl-C to interrupt EventualResult.wait(timeout=None).

0.7.0

• Improved documentation.

0.6.0

• Renamed DeferredResult to EventualResult, to reduce confusion with Twisted’s Deferred class.
The old name still works, but is deprecated.

• Deprecated @in_reactor, replaced with @run_in_reactor which doesn’t change the arguments to the
wrapped function. The deprecated API still works, however.

• Unhandled exceptions in EventualResult objects are logged.

1.5. What’s New 19

http://tm.tl/6738

Crochet Documentation, Release 1.7.0+0.g93c94be

• Added more examples.

• setup.py sdist should work now.

0.5.0

• Initial release.

20 Chapter 1. Table of Contents

	Table of Contents
	Introduction
	Crochet: Use Twisted Anywhere!
	API and Features
	Examples

	The API
	Setup
	@wait_for: Blocking Calls into Twisted
	@run_in_reactor: Asynchronous Results
	Using Crochet from Twisted Applications
	Unit Testing

	Best Practices
	Hide Twisted and Crochet
	Minimize Decorated Code

	Known Issues and Workarounds
	Preventing Deadlocks on Shutdown
	Reducing Twisted Log Messages
	Missing Tracebacks
	uWSGI, multiprocessing, Celery

	What's New
	1.7.0
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.1.0
	1.0.0
	0.9.0
	0.8.1
	0.7.0
	0.6.0
	0.5.0

